KRĒTUS THOUGHTFULLY DESIGNED CONCRETE COATINGS

TOP SHELF® EPOXY ESD A-RESIN|AP

Take Control of Static

KRETUS® TOP SHELF® EPOXY ESD A-RESIN | AP gives KRETUS® ESD SYSTEMS (kretus.com/esd) the high-build advantage other systems lack. It can be applied at 5 to 60 mils thick without losing efficacy.

ADVANTAGES

- Meets USDA, FDA, EPA, and SCAQMD Standards
- Eligible for LEED Points: Made in California from Partially Recycled Materials
- Body Voltage Generation: <15 volts
- Conductive (over conductive primer): >10⁴ to <10⁶
- Dissipative: >10⁶ to <10⁹

SUGGESTED USES & APPLICATION AREAS

- 911 Call Centers
- Aircraft Hangars
- Clean Rooms, Labs, and Testing Facilities
- Electronics Assembly and Production
- Hazardous Industries (e.g., dust or explosion)
- Packaging Lines
- Pharmaceutical Facilities

KRETUS® SYSTEMS

ESD (Static Control)

- Adhesion to Concrete, Wood, Metal, Non-glazed Tiles
- Anti-bacterial
- High Traffic and Impact Resistance
- Low Maintenance
- Low Odor
- Waterproofing
- Plastics Manufacturing
- Processing Areas
- Sensitive Product Storage
- Data Server Rooms
- Shipping and Receiving
- Transport Aisles

For all KRETUS® systems, see kretus.com/systems.

PRECAUTIONS AND LIMITATIONS

- Material was designed as a top coat in the KRETUS® STATIC CONTROL SYSTEM (kretus.com/static-control) and is required for the system to achieve desired electrostatic properties.
- DO NOT add a topcoat with non-conductive waxes or finishes—this will render static control properties ineffective.
- DO NOT let material puddle on floor—this will cause white spots to appear when coating cures.
- Adding Poly Colorant to mixture may reduce working time by 5 minutes.
- KRETUS® ESD ADDITIVE may deepen color. Complete samples and onsite mock-ups to ensure desired finish is achieved.
- UV Resistance: Epoxy will amber over time. If color stability is important, use a UV-stable ESD top coat like Polyurethane HP ESD, Polyaspartic 92 ESD|EZ, or Polyaspartic 92 ESD|Fast. See kretus.com/esd.
- Prime Coat: A prime coat may be required if stem walls are highly absorbent, if outgassing is suspected or prevalent, or if concrete is very porous or in poor condition. All concrete repairs must be completed before installing any system.
- DO NOT apply single coat greater than 60 mils (26 sf/gal).
- Complete samples and onsite mockups to ensure desired results are achieved.
- **Application temperatures:** When temperatures increase, material cures faster. Material cures slower when temperatures decrease.
- Application times are based on test results compiled by lab technicians in a controlled setting. All times recorded using 1-quart samples. All Top Shelf® hardeners were combined with A-Resin.
- If application temperatures are outside of those recommended, contact your KRETUS® Technical Representative.
- Coverage rates are for estimating purposes only. Factors such as waste, unusual/abnormal substrate conditions, and other unforeseen jobsite conditions may affect actual product yields and are the responsibility of the installer.

- Apply material when temperature is decreasing—adhere to the KRETUS® Dew Point Calculation Chart available at kretus.com/project-planning. DO NOT apply under direct sunlight. DO NOT install under inclement weather conditions.
- Recommended for Applicators level 3 and up. See kretus.com/applicator-skill-level.

FINISH AND COLOR

- Low Gloss.
- Color: See ESD Brochure at kretus.com/esd.

COMPONENTS

Standard Kit

Part A: Top Shelf® Epoxy A-Resin, 1 gal
 Part B: Top Shelf® Epoxy AP, 1/2 gal

• Colorant: Top Shelf® Epoxy Colorant, 16 oz

• Texture: Anti-Slip Bead 50, 8 oz, Anti-Slip Bead 100, 8 oz

• ESD: ESD Additive, 1 gal

Larger kits may be available through KRETUS® distributor.

Bulk Kit

Part A: Top Shelf® Epoxy A-Resin, 10 gal

Part B: Top Shelf® Epoxy AP, 5 gal

• Colorant: Top Shelf® Epoxy Colorant, 80 oz

• Texture: Anti-Slip Bead 50, 40 oz, Anti-Slip Bead 100, 40 oz

• ESD: ESD Additive, 5 gal

SAFETY, TESTING AND WARRANTY

- Safety: Personal protective equipment and safety conditions must be considered before using any product. Review all relevant and current documentation including Safety Data Sheets (kretus.com/safety-data-sheets).
- Testing: Before installation: Test and look for any unknown site conditions and/or defects. To ensure desired results are achieved, the system should be tested in a small area on site before full installation begins.
- Warranty: For warranty to be upheld, Pre- and Post-Job Checklists (kretus.com/project-planning) must be completed.

STORAGE AND APPLICATION TEMPERATURES

Ideal Storage Environment	Dry, Out of Direct Sunlight, 60-80°F
Material Temperature During Application	50-70°F and 5°F Above Dew Point
Minimum Substrate Temperature During Application	5°F Above Dew Point
Recommended Application Temperature	60-95°, < 90% RH

Average Application Time

Ambient Temperature	60-95°, < 90% RH	50°F, 50 % RH	70°F, 50 % RH	100°F, 50 % RH
Working Time	25-35 mins	45 min	35 min	25 min
Recoat Window	7.5-36 hrs.	14-36 hrs.	7.5-36 hrs.	6-24 hrs.
Return to Service (Foot Traffic)	24 hrs.	36 hrs.	24 hrs.	24 hrs.
Full Cure (Vehicle Traffic)	7 days	7 days	7 days	7 days

SURFACE PREPARATION

Top Shelf® Epoxy A-Resin | AP is designed to be combined with a KRETUS® coating and installed over another KRETUS® application. Before installing, the substrate must be sound, meaning all necessary concrete repairs have been completed, and it must be clean, dry, and free of any contaminates, moisture, materials, or particles that may hinder material's adhesion to concrete.

MIXING AND APPLICATION

Standard Kit Mix Ratio	1 gal A:1/2 gal B:1 gal ESD:16 oz Colorant:16 oz Texture
Mixing Drill	low-RPM, low-torque drill with Jiffy double-bladed mixer
Mixing Directions	Add Colorant to Part A and mix until color is uniform. Add ESD additive and continue mixing until consistency is uniform. Add Part B and continue mixing for up to 1 minute. Add texture and continue to mix until color and consistency are uniform. Total mixing time: 2 minutes.

Coverage Rates per Standard Kit

Top Coat, 8-12 mils	210-300 sf/kit
Top Coat, 15-20 mils	120-160 sf/kit
Top Coat, 25-30 mils	80-100 sf/kit

Premeasure components to make sure you are using the correct mix ratio. Combine components according to mix instructions. Continue mixing until the coating's consistency is uniform. The coating must remain thoroughly mixed during the application.

Continue mixing during application to ensure a uniform cure.

Keep a wet edge while applying product. Wear spiked shoes when walking on material. For more applications and coverage rates, see KRETUS® General Overview (kretus.com/product-general-overviews).

PROPERTIES OF FULLY CURED COATING

PROPERTIES	TEST METHOD	TYPICAL VALUES
Conductive System Resistivity	ASTM D257	>10^4 and <10^6 ohms
Dissipative System Resistivity	ASTM D257	>10^6 and <10^9 ohms
Abrasion Resistance with Anti-Slip	ASTM D4060	24-30 mg
Adhesion Strength	ASTM D4541	400 psi, concrete failure
Adhesion Strength	ASTM D4541	400 psi, vinyl failure
Adhesion Strength	ASTM D4541	500 psi, natural quartz failure
Adhesion Strength	ASTM D4541	450 psi, color quartz failure
Compressive Strength	ASTM D695	13,700 psi
Flame Spread/Critical Flux	ASTM E648	Class 1
Flame Spread/Rate of Burning	ASTM D635	Self-extinguishing
Flexural Strength	ASTM D790	9,000 psi
Hardness (Shore D)	ASTM D2240	85
Impact Resistance	ASTM D2794	120 in-lbs.
Indoor Air Quality	CA 01350	Compliant
Microbial Resistance	ASTM G21	Passes, 0 growth
Modulus of Elasticity	ASTM D790	5.0 x 10^5 psi
Moisture Vapor Permeance	ASTM E96	0.08 perms
Tensile Elongation at Break	ASTM D638	5%
Tensile Strength	ASTM D638	7,800 psi
Thermal Coefficient of Linear Expansion	ASTM D696	18.0 x 10^(-)6 in/in/°F
Water Absorption	ASTM D570	<0.05%
Moisture Vapor Emission Rate	ASTM F1869	8-10 lbs.
Relative Humidity	ASTM F2170	<80%

CHEMICAL AND STAIN RESISTANCE

- 1 = Best for chemical resistance: Chemical has no adverse effects on fully cured coating; remove within 24 hours.
- 2 = Low potential for stain: Chemical has no adverse effects on fully cured coating if removed within 24 hours.
- 3 = High potential for stain or degradation: Chemical must be removed within 24 hours of exposure.

NR = Not recommended

Acetic Acid (Component of Vinegar), 10%1	Methanol	NR
Acetic Acid, 30%2	Methylene Chloride	
AcetoneNR	MIBK (Methyl Isobutyl Ketone)	
Ammonia, 30%1	Mineral Oil	
Ammonium Hydroxide, 30%1	Motor Oil, SAE 30	1
Antifreeze (Coolant)1	Mineral Spirits	
Benzene (Component of Crude Oil)3	Mustard, Yellow	
Benzyl Alcohol3	Nitric Acid, 30%	
Betadine, 11%NR	Oleic Acid	
Boric Acid, 4%1	Oxalic Acid, 10%	
Brake Fluid, DOT 31	Phosphoric Acid, 20%	
Chromic Acid, 10%3	Potassium Hydroxide, 30%	
Chromic Acid, 30%3	(Alkaline Batteries, Soap Manufacturing)	1
Citric Acid, 30%1	Propylene Glycol	
Ethanol, 95%NR	Silver Nitrate, 20% (Photo Labs)	3
Ethyl Acetate, 99% (Food/Beverage Facility)NR	Hydraulic Fluid (Aviation), Skydrol LD-4	
Formaldehyde, 37%3	Sodium Chloride, 20%	1
Premium Gasoline1	Sodium Hydroxide (Caustic Soda), 50%	1
Hydraulic Fluids	Sodium Hypochlorite (Bleach), 10%	2
(Machinery, Automobile, Aviation)2	Sodium Hypochlorite (Bleach), 30%	3
Hydrochloric Acid, 10%3	Sodium Persulfate	
Hydrochloric Acid, 30%3	(Bleaching and Oxidizing Agent)	3
Hydrofluoric Acid, 10%1	Sulfuric Acid, 37% (Battery Acid)	NR
Hydrofluoric Acid, 30%3	Tannic Acid, 20%	3
Hydrogen Peroxide, 10%NR	Tartaric Acid, 10%	1
Hydrogen Peroxide, 50%NR	Transmission Fluid	1
lodine, 2%3	Urine, Dog or Cat	1
Isopropyl Alcohol3	Urea (Nitrogen-Rich Fertilizer)	1
Jet Fuel1	Vinegar, Distilled	1
Lactic Acid, 30% (Dairy Facility)NR	Water (Hard Water from Well)	1
Lime Juice2	Whisky	1
Magnesium Hydroxide1	Wine, Cabernet Sauvignon	
MEK (Methyl Ethyl Ketone)NR	Xylene	3
Discounts an adamenta many affect wealthing times and an about	al maniata mana and in amanana matamatial famatain. Cantinga tant	اما

Pigments or colorants may affect working times, reduce chemical resistance, or increase potential for stain. Coatings tested at ambient temperature over 1-3 days' exposure to chemical. To ensure desired results are achieved, products should be tested on site before installation.

DISCLAIMER: The information contained in this document is intended for use by KRETUS®-qualified and -trained professionals. This is not a legally binding document and does not release the specifier from their responsibility to apply materials correctly under the specific conditions of the construction site and the intended results of the construction process. The most current valid standards for testing and installation, acknowledged rules of technology, as well as KRETUS® technical guidelines must be adhered to at all times. The steps given in this document and other mentioned documents are critical to the success of your project.